

Next quiz: Sections 9.3, 9.5, 9.6 and density May need $P=F / A$ again

Main Ideas Today: Pressure with depth Buoyancy

When a dense object (or any object) pushes against you, it applies pressure (or stress).
Pressure = Force / Area

$$
\text { Unit of pressure is pascal }(\mathrm{Pa}) \quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

Pressure depends on the area over which the force is spread (Also known as stress in solid materials, as in section 9.10.)

Pressure \& Depth
 Assume the density is the same throughout the fluid

Fluids have pressure that varies with depth

Reminder: P = Force / Area

Here density is not the same
(why it separates)

Pressure \& Depth
 \square Assume the density is the same throughout the fluid

Fluids have pressure that varies with depth

- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium $\quad \sum \vec{F}=0$

Here density is not

Reminder: P = Force / Area

Pressure \& Depth
 \square Assume the density is the same throughout the fluid

Fluids have pressure that varies with depth

- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium

$$
\sum \vec{F}=0
$$

All points at the same depth must be at the same pressure
\square Otherwise, the fluid would move (not equilibrium)

Here density is not

Reminder: P = Force / Area

Pressure \& Depth
 \square Assume the density is the same throughout the fluid

Fluids have pressure that varies with depth

- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium

$$
\sum \vec{F}=0
$$

- All points at the same depth must be at the same pressure
\square Otherwise, the fluid would move (not equilibrium)
- Examine the darker region, a sample of liquid within a cylinder
\square It has a cross-sectional area A
\square Extends from depth d to $d+h$ below the surface

Pressure \& Depth
 \square Assume the density is the same throughout the fluid

Fluids have pressure that varies with depth

- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium

$$
\sum \vec{F}=0
$$

- All points at the same depth must be at the same pressure
\square Otherwise, the fluid would move (not equilibrium)
- Examine the darker region, a sample of liquid within a cylinder
\square It has a cross-sectional area A
\square Extends from depth d to $d+h$ below the surface
A
Area A coming out at you (hidden)
What forces act on this box of liquid?

Reminder: P = Force / Area

Pressure \& Depth

$$
P=F / A \text { or } F=P A
$$

- The three forces are: (vertical direction)

\square Gravity acting downward, $M g$

Pressure \& Depth

$$
P=F / A \text { or } F=P A
$$

The three forces are: (vertical direction)
\square Downward force on the top, $P_{0} A$
\square Upward on the bottom, PA
\square Gravity acting downward, $M \mathrm{~g}$

- Since the net force must be zero:
\square This chooses upward as positive

$$
\Sigma F_{y}=0=P A-P_{o} A-M g
$$

Pressure \& Depth

$$
P=F / A \text { or } F=P A
$$

The three forces are: (vertical direction)
\square Downward force on the top, $P_{0} A$
\square Upward on the bottom, PA

\square Gravity acting downward, $\mathbf{M g}$

- The mass can be found from the density: $M=\rho V=\rho A h$
- Since the net force must be zero:
\square This chooses upward as positive

$$
\begin{gathered}
\Sigma F_{y}=0=P A-P_{o} A-M g \\
0=P A-P_{o} A-\rho A h g
\end{gathered}
$$

Pressure \& Depth

$$
P=F / A \text { or } F=P A
$$

The three forces are: (vertical direction)

\square Gravity acting downward, $M g$

- Since the net force must be zero:
\square This chooses upward as positive
- Solving for the pressure gives

$$
\begin{gathered}
\Sigma F_{y}=0=P A-P_{o} A-M g \\
0=P A-P_{o} A-\rho A h g
\end{gathered}
$$

$$
P=P_{0}+\rho g h
$$

- The pressure P at a depth h below a point in the liquid at which the pressure is P_{0} is greater by an amount $\rho g h$

Pressure at Bottom of Lake

Calculate the absolute pressure at the

 bottom of a freshwater lake at a depth of27.5 m . Assume the density of the water is
$1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the air above is at a pressure of 101.3 kPa .

Good Ideas Come To You When Relaxed

- https://www.youtube.com/watch?v=ijij88xD5fDI

Archimedes' Principle

If the weight of the displaced fluid equals the

 weight of the object, the object floats.

$$
\begin{aligned}
& \qquad F_{b}=F_{g} \\
& \text { Floating Object Only }
\end{aligned}
$$

Buoyant Force

- The buoyant force is the upward force exerted by a fluid on any immersed object

$$
\mathrm{F}_{\mathrm{b}}=\mathrm{W}_{\text {FluidDisplaced }}
$$

Any object completely or partially submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced.

Two blocks (A and B) have the same size and shape. Block A floats in the water, but Block B sinks in the same water. Which block has the larger buoyant force on it?

$$
\mathrm{F}_{\mathrm{b}}=\mathrm{W}_{\text {FluidDisplaced }}
$$

A. Block A has the larger buoyant force on it. B. Block B has the larger buoyant force on it. C. Neither; they have the same.
D. Not enough information

Archimedes's Principle
 $$
\rho=M / V
$$

- The magnitude of the buoyant force always equals the weight of the fluid displaced by the object $F_{b}=M_{\text {WaterDisplaced }} g=\rho_{\text {fluid }} g V$
- Archimedes's Principle does not refer to the makeup of the object experiencing the buoyant force

Two ways to find F_{B}

As stated before:

$$
F_{b}=\left(P_{b}-P_{t}\right) A=\rho_{\text {fluid }} V \cdot g
$$

If the weight of the displaced water is less than the weight of the object, the object sinks.
Therefore, if the average density of the object is more than the density of water, it sinks.

$$
\begin{aligned}
& \quad \mathrm{F}_{\mathrm{g}}>\mathrm{F}_{\mathrm{b}} \\
& \text { Object sinks }
\end{aligned}
$$

F_{g} - The downward gravitational force is

$$
F_{g}=\rho_{\text {object }} g V_{\text {object }}
$$

- The net force is $F_{b}-F_{g}=\left(\rho_{\text {fluid }}-\rho_{\text {object }}\right) g V_{\text {object }}$

How can a steel ship float?

The hull contains mostly air and displaces a lot of water...enough so that $F_{b}=F_{g}$ and it floats.

Summary for a Floating Object

- Object in equilibrium
- Buoyant force is balanced by force of gravity
- Volume of the fluid displaced corresponds to volume of the object beneath the fluid level

Archimedes's Principle, Iceberg Example

- What fraction of the iceberg is below water?

Past Homework Floating Object

The average human has a density of 945 $\mathrm{kg} / \mathrm{m}^{3}$ after inhaling and $1020 \mathrm{~kg} / \mathrm{m}^{3}$ after exhaling. Without making any swimming movements, what percentage of the human body would be above the surface in the Dead Sea (a lake with a water density of about $1230 \mathrm{~kg} / \mathrm{m}^{3}$) after inhaling and after exhaling?

You hold a 0.54 kg rubber ball with a diameter of 25 cm just below the water's surface in your swimming
pool. With what force do you have to apply to keep the ball from popping back up above the water?

Density of freshwater $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Pressure Measurements:

Manometer

- A device for measuring the pressure of a gas contained in a vessel
- One end of the U-shaped tube is open to the atmosphere
- The other end is connected to the pressure to be measured
- Pressure at B is $P_{0}+\rho g h$

Absolute vs. Gauge Pressure

- $P=P_{0}+\rho g h$
- P is the absolute pressure
- The gauge pressure is $P-P_{0}$
\square This is also $\rho g h$This is what you measure in your tires

STETHOSCOPE A stethoscope is used to hear the sound of blood rushing back through the artery. The first thumping sound is the systolic blood pressure. When the thumping sound is no longer heard, that's the diastolic pressure.

Not on test

Clicker Answers

$123=D, 124=B$

